
Data Structures and Abstractions

Hash Tables &
Graphs

Lecture 11

Important Advice for LAB/Assignment

• You must complete Lab 10.
– Submission needed for the last assessed lab
– Submission needed for the assignment

• Your BST needs to be usable beyond the purposes of the
lab/assignment.

• Follow the assignment specifications carefully. Read the
QandA file (when available) regularly to see any clarification
or advice.
– If the answer to your question is not there, ask early.

• Be mindful of summing small floating point numbers. Errors
accumulate.
– See the following for some advice:

• https://en.wikipedia.org/wiki/Kahan_summation_algorithm
• For a more detailed answer see: “What Every Computer Scientist Should Know

About Floating-Point Arithmetic” at http://docs.oracle.com/cd/E19957-01/806-
3568/ncg_goldberg.html

https://en.wikipedia.org/wiki/Kahan_summation_algorithm
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Maps

• Previously we have looked at the STL map class, where any type can be
used as a key into a container of paired values, giving direct access to the
second part of the data.

• So we can have:

3

map<string,string> DictionaryType;

Dictionary dictionary; // not really a good way to name

dictionary[“aardvark”] = “A nocturnal mammal of southern

Africa”

cout << “arardvark:” << dictionary[“aardvark”];

//Figure out how may string object constructions occurred in the lines

//above

Hash Tables

• One way to achieve this kind of direct access for the map class is to use
what is known as a hash table.
– If keys are unique a balanced binary search tree can be used.
– If keys are not unique and key are unordered as in std::unordered_multimap or

std::unordered_multiset , then hashing is used.

• When storing the data, the key—in this case “aardvark” —is passed
through a hash function, to give an index into an ordinary array. [1] [2]

• The quality of the hash function determines how many different keys hash
to the same index value. (technically known as “collisions”)

• No hash function is perfect under all conditions, therefore there will
always be clashes (“collisions”).

• Therefore there must also be a collision resolution defined.
• Hash tables will always have empty space. To work most efficiently they

are generally required to be no more than half full.

4

Dealing with Strings

• The key used in the above example is a string.

• Obviously you cannot pass a string through a
mathematical function.

• Therefore strings must be mapped to integers
before hashing.

• There are many ways to do this, however it is
important to make sure that the method
chosen does not promote collisions.

5

Insertion into a Hash Table

• Insert (pair)

• index = HashFunction (pair.key)

index = index mod arraySize // in hash table i.e %

IF array[index] is empty

array[index] = pair

ELSE

HandleCollision (index, pair)

ENDIF

• End Insert

6

Searching a Hash Table

Search (key, found)

index = HashFunction (key)

index = index mod arraySize

IF array[index] is empty

found = false

ELSE

IF array[index].key = key

found = true

ELSE // another key was hashed to the same index

found = CollisionSearch (index, pair)

ENDIF

ENDIF

End Search

7

Hash Functions
• The ideal function would: [1]

– be easy to calculate;
– never produce the same index from two different keys;
– spread the records evenly throughout the array;
– deal with ‘bad’ keys better than others.

• Of course no function has all of these attributes under all conditions.
– It may be possible under restricted conditions where all keys are

known in advance.
• Common Hash Functions

– Truncation
– Extraction
– Folding
– Modular arithmetic
– Prime number division
– Mid-square hashing
– Radix conversion

8

Radix Conversion
• The best known of these is Radix Conversion.

• Choose a low prime [1] number such as 7, 11 or 13 to use as the base of a
polynomial. Then use the digits of the key as the factors of the polynomial.

• Finally modulate by the array size, which should be a prime number.

• For example, if
key = 32934648
array size = 997
Base = 7

Then
index = (3 * 77 + 2 * 76 + 9 * 75 + 3 * 74 + 4 * 73 + 6 * 72 + 4 * 7 + 8) MOD 997

= 2866095 MOD 997
= 717

9

Collision Resolution
• Collision resolution needs to:

– avoid clustering of records;
– be as simple to code as possible;
– only fail when the array is actually full;
– be ‘reversible’ to allow for deletion/search.

• As before, no method fulfils all these requirements under every
possible condition.

• Common collision resolutions are:
– Linear probing
– Quadratic probing
– Random probing
– Linked collisions
– Overflow containers

10

Probing
• Linear probing simply looks for the next empty space in the

array. So if index is full, index+1 is checked, then index+2,
index+3 etc. This has the disadvantage of increasing
clustering and therefore collisions.

• Quadratic probing looks for the next empty space using
‘square’ jumps. So if index is full, index+1 is checked, then
index+4, index+9, index+16 etc. This avoids the clustering of
linear probing, but can fail when the array is not full.

• Random probing uses a random number generator—from a
set starting point—for the increments in index. This avoids
clustering, but is harder to reverse when a record is to be
deleted (search?). Use pseudo -random number generator.

11

Linking Collisions

• After the first collision, a second hash function
is used to generate an alternate position and
the two are linked.

• A third collision would then have a link from
the second collision and so on.

• This is harder to code and uses extra memory,
but retrieval is faster.

12

key1 key2

An Overflow Container

• Instead of using a one dimensional array to
store data, a two dimensional structure is
used.

• The records are placed in a linked list from the
hashed index.

13

key2

key1

Readings

• Reference book, Introduction to Algorithms.
Chapter on Hash Tables.

14

Further Exploration

• Khan Academy Video one particular example of
the use Hash functions “Bitcoin: Cryptographic
hash functions”

• Tutorial on Hash functions
http://research.cs.vt.edu/AVresearch/hashing/

15

https://www.khanacademy.org/economics-finance-domain/core-finance/money-and-banking/bitcoin/v/bitcoin-cryptographic-hash-function
http://research.cs.vt.edu/AVresearch/hashing/

Data Structures and Abstractions

Graph Theory

The Origins of Graph Theory
• Graph Theory (unlike a lot of what we

do) dates back to before 1736.
• In Konisberg there were two islands

in the middle of a river, connected by
7 bridges. [1]
• Textbook has the abstract version.

• The question was: “is it possible
to cross each bridge exactly once?”
– Abstract representation is used to

investigate solutions.
– Any solution obtained can then be

used for similar problems.

• In 1736, Euler answered this problem
by establishing “Graph Theory” as a
discipline. (The answer is “no”)

Another Common Problem

• As a child you may have met something similar:
Draw the shape below without taking your pen
off the page and without going over any line or
node more than once.

• It is a graph problem, just as the Konisberg
problem is a graph problem.

But...
• But the theory itself remained a kind of

mathematician-only esoteric field until

1. Computers became available that could handle graph
processing algorithms in reasonable time.

2. Many of the complex problems of society were
recognised to be graph problems.

3. It was realised that Network traffic and the WWW
were graphs.

4. Some AI applications (simulations, neural networks
etc) were discovered to use graph theory.

5. Computer game playing required graph theory.

So What is a Graph?
• A graph is a set of vertices connected by edges.

• Two vertices are adjacent if they are connected
by a single edge.

• A graph is weighted if there is a number
associated with each edge. (can be cost, distance,
..etc)

• A graph is directed if any of the edges are one-
way.

vertex

edge adjacent
vertices

non-
adjacent
vertices

5
8

6
7 11

12

Graph Definitions

• A path is a sequence of adjacent vertices

• A simple path is one that has distinct edges: no vertex is
visited twice.

• A cyclic path is one where the start and finish are the same
vertex.

• Two paths are disjoint if they have no vertices in common,
other than, possibly, their endpoints. [see the red and blue
paths]

1

2

3

4

5

6

• In an unweighted graph, the length of a path
is the number of traversed edges.

• In a weighted graph, the length of a path is
the sum of the weights of the traversed edges.

Length = 5

40

55

70

65

95 Length = 95+65+40+55+70 = 325

• A tour is a
cyclic path
that touches
every vertex.

23 of 22

• A connected graph is one
where every vertex is
reachable from every other
vertex

Connected

Not connected

• A graph with no
cycles (an acyclic
graph) is a tree.

• A complete graph is
one where every vertex
is adjacent to every
other vertex.

Data Structures to Represent Graphs
• Representing a graph as vertices and edges is fine

in the abstract (physical) sense but makes
processing too difficult.

• Two alternatives are therefore used within
programming:
– Adjacency matrices

• Constant access time
• Slow search time

– Adjacency list
• Fast search time
• Slow access time

• For both of these, the vertices are arbitrarily
numbered.

Adjacency Matrix Representation
• The graph is

represented as a two
dimensional array of
boolean.

• A vertex is not
considered to
connect to itself.

3

1

4

2

5

0

false false true true false false
false false true true false true
true true false false false true
true true false false false true
false false false false false true
false true true true true false

0
1
2
3
4
5

0 1 2 3 4 5

Drawing an Adjacency Matrix

• Make sure you can draw an adjacency matrix for
a graph. Use the Graph program to check your
answers.

Adjacency List Representation

• The graph is represented as a one dimensional
sorted list of connected vertices:

3

1

4

2

5

0

0

1

2

3

4

5

2 3

2 3 5

0 1 5

0 1 5

5

1 2 3 4

Drawing an Adjacency List

• Make sure you can draw an adjacency list for a
graph. Use the Graph program to check your
answers.

Matrix and List Comparison

• Advantages of Lists
– More flexible as the size is not fixed
– Less space used: O(V+E) rather than O(V2) for a

matrix.
– Faster processing (searching) at each vertex

• Advantages of Matrices
– Easier to program
– Access time to find out if a pair of vertices are

connected is constant time as opposed to O(V) for
lists.

Directed Graph Definitions

• Directed graphs are also known as di-graphs.

• A vertex is reachable from another vertex if
there is a path between them.

• It is assumed that each vertex can reach itself.

• The in-degree of a vertex is the number of
edges leading into a vertex.

• The out-degree of a vertex is the number of
edges leading out of a vertex.

• A sink is a vertex with out-degree of zero.

• A source is a vertex of in-degree 1: it is
reachable only from itself.

Sink

Source

• A map is a di-graph where every vertex has out-
degree 1.

• A di-graph is strongly connected if every vertex
is reachable from every other vertex.

• A di-graph with no cycles is an Acyclic Directed
Graph, or DAG.

Adjacency Matrix Representation of a Di-graph

• The di-graph is represented as
a two dimensional array of
boolean.

• Note that in a di-graph vertices
are considered to be connected
to themselves.

3

1

4

2

5

0

true false true true false false
false true true false false true
false true true false false true
true true false true false true
false false false false true true
false true false true true true

0
1
2
3
4
5

0 1 2 3 4 5

Adjacency List Representation

• The di-graph is represented as a one dimensional
sorted list of connected vertices:

0

1

2

3

4

5

2

2

3

5

1 5

0 1 5

5

1 3 4

3

1

4

2

5

0

0

1

2

3

4

5

Graph Domains
• Social media – friendship networks
• Interconnections in ecosystems
• Genetics and ancestry
• Chemical structures
• Traversal problems
• Travel itineraries
• Neural networks
• The WWW (the biggest graph of them all)
• Electric circuits
• Scheduling
• Financial transactions
• Compilers use graphs to represent call structures
• Within games software
• UML diagrams, data flow diagrams, E-R diagrams etc
• Automatic diagram generation
etc.

Some Graph, Di-Graph and DAG Processing Problems

• Searching: how do we get from a particular vertex to another.
• Connectivity: is a given graph connected.
• Find the minimum length set of edges that connects all

vertices (the Minimum Spanning Tree or MST).
• Find the shortest path between two vertices.
• Find the shortest path from a specific vertex to all other

vertices (the Shortest Path Tree or SPT).
• Planarity: can a specific graph be drawn without any

intersecting lines?
• Matching: what is the largest subset of edges with the

property that no two are connected to the same vertex?
• Find the tour with the shortest path (mail carrier problem).
• Topological Sort: sort the vertices of a DAG in order of the

number of dependencies.

Complex problems

• Graphs are a powerful tool for modelling
complex problems.

• “The great unexplored frontier is complexity

– I am convinced that nations and people that
master the new science of complexity will become
the economic, cultural, and political superpowers
of the next century.” Heinz Pagels

In Fact

• These problems are NP-Hard.
• There is no solution for any of them that is

guaranteed to be solvable in a reasonable
amount of time.
– Restricted case solutions are possible but not in the

general case.

• There are only solutions that work quite well in
some circumstances.

• This, combined with the large number of
domains, makes this field one that is rich in
research possibilities.

Readings

• Textbook Chapter on Graphs.

• The lecture notes and textbook is sufficient for
this unit.

• Further exploration:
– Complex systems: Network thinking, Melanie

Mitchell, Artificial Intelligence, vol. 170(18),
Science Direct, Elsevier.

– Reference book, Introduction to Algorithms. Part
on Graph Algorithms contains a number of
chapters on graph algorithms. (for further study)

https://www-sciencedirect-com.libproxy.murdoch.edu.au/science/article/pii/S000437020600083X?via%3Dihub

Data Structures and Abstractions

Graph Processing Algorithms

42 of 16

Depth First Search

• Depth first search (DFS) answers the question
“is vertex A connected to vertex B?”

• Using an adjacency matrix, DFS takes O(V2).

• Using an adjacency list, DFS takes O(V+E).

• DFS of a graph is usually done recursively.

• Textbook has code with explanations.

43 of 16

Depth First Search Algorithm

• DFS (fromVertex, toVertex)

• boolean found = false

• IF fromVertex <> toVertex // what if == ?

• IF the fromVertex has not already been
visited

• Mark it as visited

• FOR each vertex in its adjacency list
AND while not found

• found = DFS(adjacentVertex, toVertex)

• ENDFOR

of 16

Examples

45 of 16

Other Examples

• Make sure you can do, by hand, a depth first
search of a graph. The Graph program can be
used to check your answers.

46 of 16

Application to Maze Solving

• Consider a
maze.

• This can be
modelled as a
graph.

• DFS can now
be used to find
the route from
start to finish.

47 of 16

Breadth First Search

• Breadth First Search (BFS) finds the closest
solution to your current position in the graph.

• For example, in all game playing you want the
fastest route to a game win.

• In a tree it is equivalent to searching layer by
layer. Go through the animation of the breadth first search in the tree lecture notes

first.

48 of 16

• Breadth First Search (fromVertex, toVertex)

• boolean found = false

• IF (fromVertex <> toVertex)

• Put fromVertex on a queue

• Mark fromVertex as visited

• WHILE the queue is not empty AND not found

• Remove qVertex from the queue

• FOR each aVertex in the adjacency list of qVertex AND not found

• IF aVertex has not been visited

• IF aVertex <> toVertex

• Add aVertex to the queue

• Mark aVertex as visited

• ELSE

• found = true

• ENDIF

• ENDIF

• ENDFOR

• ENDWHILE

• ELSE

• found = true

• ENDIF

• return found

• END BFS

49 of 16

Breadth First Search Examples

50 of 16

Other Examples

• Make sure you can do, by hand, a breadth first
search of a graph. Use the graphs program to
check your answers.

51 of 16

Shortest Path Problems

• Shortest path problems apply to weighted
graphs only.

• There are three sub-problems:

– Find the shortest path from vertex X to vertex W.

– Find the shortest path between every pair of
vertices.

– Find the shortest path from a particular vertex to
all other vertices.

• The latter of these forms a Shortest Path Tree
(SPT).

• Every vertex has a different SPT.

52 of 16

SPT Algorithms

• There are many SPT algorithms.

• Some are faster than others and some are
easier to code (never the same algorithm of
course!)

• Research continues in the area because of the
huge importance of network traffic routing,
and other similar problems.

• We will look at only one as it is easy to
understand and good enough to be useful.

• It has complexity of O(V), which is very good
for a graph theory algorithm.

53 of 16

Dijkstra’s SPT Algorithm

• DijkstraSPT

• Put the starting vertex into the tree

• FOR V-1 times

• Add the vertex that is adjacent to the SPT and
which has the

• shortest total path from the starting vertex

• ENDFOR

• End DijkstraSPT

0 1

2

3
4

5

6

7

87

91

138

60

125

172

70
102

144

205
0

From Vertex 0

1 4

0 1

2

3
4

5

6

7

2 3

6

75

END

54 of 16

Dijkstra’s SPT Algorithm

• DijkstraSPT

• Put the starting vertex into the tree

• FOR V-1 times

• Add the vertex that is adjacent to the SPT and
which has the

• shortest total path from the starting vertex

• ENDFOR

• End DijkstraSPT

0 1

2

3
4

5

6

7

87

91

138

60

125

172

70
102

144

205
4

From Vertex 4

3 7

0 1

2

3
4

5

6

7

2 5

0

61

ENDNote that this tree is different from the previous one.

55 of 16

Shortest Path Between Two
Vertices

• This can be done using Dijkstra’s SPT algorithm, but stopping when the target
vertex is reached.

ShortestPath

Put the starting vertex into the tree

WHILE we have added less than V-1 vertices AND

target not found

Add the vertex that is adjacent to the SPT and

which has the shortest total path from the

starting vertex

IF this is the target vertex

found = true

ENDIF

ENDWHILE

Return found

END Shortest Path

56 of 16

Other Examples

• Make sure you can draw, by hand, an SPT of a
graph from any starting vertex. Use the Graph
program to check your answers.

57 of 16

Readings

• Textbook Chapter on Graphs.

• Reference book, Introduction to Algorithms.
Part on Graph Algorithms contains a number
of chapters on graph algorithms. Please read
for further study. The lecture notes and
textbook is sufficient for this unit.

Data Structures and Abstractions

Minimum Spanning Tree Algorithms

59

MST versus SPT

• The SPT problem of the previous lecture
involved finding the shortest path from a
single vertex to every other vertex.

• The MST problem involves finding the shortest
way to connect all the vertices to each other,
using any vertex as a starting point.

• Both apply to weighted graphs only.

• The SPT is different for each starting vertex,
the MST is the same no matter which vertex
you start at.

60

Minimum Spanning Trees
• The starting point of an MST is irrelevant: all

three of the trees below are equivalent and
represent the MST of the same graph.

61

MST Algorithms

• There is much continuing research in this area.

• All algorithms have advantages and
disadvantages.

• All algorithms are more or less efficient
depending on the type of graph being
processed.

• The choice of data structure and programming
language also affects the speed.

• We will look at two algorithms: Prim’s,
Kruskal’s and point out another one by
Boruvka.

62

Prim’s Algorithm (animation)

• PrimsMST

• Pick any vertex and put it in the MST

• FOR V-1 times

• Add the shortest edge from a vertex
already in the

• MST to one outside the MST

• ENDFOR

• END PrimsMST

0 1

2

3
4

5

6

7

87

91

138

60

125

172

70
102

144

205

0

1

0 1

2

3
4

5

6

7

2

4

3 7

5

6

END

63

Kruskal’s Algorithm (animation)

• KruskalMST

• Sort the edges from shortest to longest

• LOOP for each edge from shortest to longest
AND edges added < V-1

• Add the edge to the MST if it does not
form a cycle with

• previously added edge

• END KruskalMST

0 1

2

3
4

5

6

7

87

91

138

60

125

172

70
102

144

205
0

1

0 1

2

3
4

5

6

7

2

4

3 5

7

6

END

Note that this tree is topgraphically the same as the previous one.

64

Costs

• The algorithms will all run faster in some
circumstances.

• There is no algorithm that is always fastest.

• The faster the algorithm, generally the harder
it is to code, and therefore the more prone to
error.

• There is no algorithm that can guarantee
linear time.

Algorithm Cost Comment

Prim’s O(V2) Optimal for dense graphs

Kruskal’s O(E log(E)) The highest cost is in the sorting

Boruvka’s O(E log(V)) This is a conservative upper bound

65

Other Examples

• Make sure you can draw, by hand, an MST
using each of these algorithms. The Graph
program will allow you to check your answers.

66

Readings

• Textbook Chapter on Graphs.

• Reference book, Introduction to Algorithms.
Part on Graph Algorithms contains a number
of chapters on graph algorithms. Please read
for further study. The lecture notes and
textbook is sufficient for this unit. The
reference book would give more details.

